MAPR 2025 THE 8th INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION ## Few-Shot Instance Segmentation: An Exploration in the Frequency Domain for Camouflage Instances Thanh-Danh Nguyen^{1,2}, Hung-Phu Cao³, Thanh Duc Ngo^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Tam V. Nguyen⁴ ¹University of Information Technology, Ho Chi Minh City, Vietnam, ²Vietnam National University, Ho Chi Minh City, Vietnam, ³Endava Vietnam, Ho Chi Minh City, Vietnam, ⁴University of Dayton, Dayton, OH 45469, United States {danhnt, thanhnd, tiepnv}@uit.edu.vn, caohungphu@hotmail.com, tamnguyen@udayton.edu, †corresponding author ### INTRODUCTION Motivation: Color space domain-based augmentation fails to capture the full range of visual camouflage characteristics; the derivative frequency domain supports revealing the minor differences. Main contribution: FS-CAMOFreq, a novel framework addressing few-shot camouflage instance segmentation (CIS) via the instance-aware frequencybased augmentation. Fig. 1. Breaking a camouflage image into the frequency domain by a phase and an amplitude component via Fast Fourier Transform FFT. #### METHOD Our **FS**-**CAMOFreq** exploits the frequency domain to enhance fewshot CIS task. Fig. 2. Overview of our FS-CAMOFreq framework exploiting the instance-ware frequency-based enhancement in few-shot camouflage instance segmentation. Few-shot Fine-tuning CIS: The CIS model is presented in two phases: - Base phase: training with abundant annotated training data C_{base} . - **Novel phase:** fine-tuning on a disjoint set of novel classes C_{novel} containing a few samples per each class of novel data. In our case, the few-shot fine-tuning relies on a few annotated samples, enhanced by our proposed instance-aware frequency-based method. #### Instance-Aware Frequency-Based Data Enhancement: The frequency-based transformations are applied to the noninstance regions, leaving the target object unaltered. The referenced image I_R is chosen from the same semantic class: - Frequency-based amplitude component swapping: the amplitude component is swapped between the input image Iand the referenced image I_R guided by the masked noninstance region. - Instance-aware augmentation: the instance regions are kept unaltered to maintain the signature of camouflage texture. #### RESULT Tab. 2. Ablation study of our FS-CAMOFreq on instance region augmentation. | FS-CAMOFreq | | Detection | n | Segmentation | | | | | |---------------|------|-----------|-------|--------------|-------|-------|--|--| | Num. of shots | nAP | nAP50 | nAP75 | nAP | nAP50 | nAP75 | | | | 1 | 5.63 | 8.38 | 6.44 | 5.31 | 8.44 | 5.97 | | | | 2 | 5.64 | 8.10 | 6.56 | 5.65 | 8.36 | 6.49 | | | | 3 | 4.94 | 7.17 | 5.71 | 5.16 | 7.35 | 5.78 | | | | 5 | 6.12 | 9.01 | 6.59 | 6.84 | 9.64 | 7.53 | | | | Avg. | 5.58 | 8.17 | 6.33 | 5.74 | 8.45 | 6.44 | | | Tab. 1. SoTA comparison of our FS-CAMOFreq evaluated on CAMO-FS benchmark. The backbones are COCO-80 FPN-R101. | Model | | | nAP | | | | | nAP50 | | | | | | | |---|----------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--|--| | Method | Backbone/
Num. of shots | Instance Segmentation Ob | | | Obj | ject Detection | | Instance Segmentation | | | Object Detection | | | | | | | 1 | 5 | Avg. | | | MTFA [3]
M-RCNN [28]
iFS-RCNN [2] | COCO-80
ResNet-50 | 2.48
4.08
4.17 | 6.40
8.29
6.38 | 4.44
6.19
5.28 | 1.98
2.82
3.92 | 6.17
6.18
6.60 | 4.08
4.50
5.26 | 4.24
6.91
6.19 | 9.89
13.89
10.02 | 7.07
10.40
8.11 | 4.12
6.78
6.23 | 9.94
13.92
10.15 | 7.03
10.35
8.19 | | | MTFA [3]
M-RCNN [28]
iFS-RCNN [2]
FS-CDIS-ITL* [4]
FS-CDIS-IMS* [4] | COCO-80
ResNet-101 | 3.66
4.39
4.27
5.35
2.99 | 5.95
10.09
7.80
9.35
9.03 | 4.81
7.24
6.04
7.35
6.01 | 2.93
3.03
3.79
4.71
2.74 | 5.84
7.79
8.08
10.36
8.44 | 4.39
5.41
5.94
7.54
5.59 | 5.37
7.58
5.98
7.80
4.62 | 8.67
15.41
11.35
14.01
12.48 | 7.02
11.50
8.67
10.91
8.55 | 5.86
7.53
5.92
7.85
4.81 | 9.13
15.86
11.52
14.40
13.18 | 7.50
11.70
8.72
11.13
9.00 | | | | | Our performance | | | | | | | | | | | | | | Baseline FS-CAMOFreq † FS-CAMOFreq (ours) | COCO-80
ResNet-101 | 5.55
5.71 | 8.21
8.31 | 6.88
7.01 | 5.34
5.56 | 8.82
8.89 | 7.08
7.23 | 8.42
8.50 | 12.07
11.72 | 10.25
10.11 | 8.49
8.56 | 12.86
12.11 | 10.68
10.34 | | | * denotes the FS-CDIS results built on top of iFS-RCNN [2] | | | | | | | | | | | | | | | † denotes our reproduced baseline FS-CDIS iFS-RCNN [2], [4] on our upgraded CUDA version 12.4 **ORGANIZERS** **SPONSORS**