MAPR 2025 THE 8th INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION

Few-Shot Instance Segmentation: An Exploration in the Frequency Domain for Camouflage Instances

Thanh-Danh Nguyen^{1,2}, Hung-Phu Cao³, Thanh Duc Ngo^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Tam V. Nguyen⁴

¹University of Information Technology, Ho Chi Minh City, Vietnam,

²Vietnam National University, Ho Chi Minh City, Vietnam, ³Endava Vietnam, Ho Chi Minh City, Vietnam, ⁴University of Dayton, Dayton, OH 45469, United States {danhnt, thanhnd, tiepnv}@uit.edu.vn, caohungphu@hotmail.com, tamnguyen@udayton.edu, †corresponding author

INTRODUCTION

Motivation: Color space domain-based augmentation fails to capture the full range of visual camouflage characteristics; the derivative frequency domain supports revealing the minor differences.

Main contribution: FS-CAMOFreq, a novel framework addressing few-shot camouflage instance segmentation (CIS) via the instance-aware frequencybased augmentation.

Fig. 1. Breaking a camouflage image into the frequency domain by a phase and an amplitude component via Fast Fourier Transform FFT.

METHOD

Our **FS**-**CAMOFreq** exploits the frequency domain to enhance fewshot CIS task.

Fig. 2. Overview of our FS-CAMOFreq framework exploiting the instance-ware frequency-based enhancement in few-shot camouflage instance segmentation.

Few-shot Fine-tuning CIS: The CIS model is presented in two phases:

- Base phase: training with abundant annotated training data C_{base} .
- **Novel phase:** fine-tuning on a disjoint set of novel classes C_{novel} containing a few samples per each class of novel data.

In our case, the few-shot fine-tuning relies on a few annotated samples, enhanced by our proposed instance-aware frequency-based method.

Instance-Aware Frequency-Based Data Enhancement:

The frequency-based transformations are applied to the noninstance regions, leaving the target object unaltered. The referenced image I_R is chosen from the same semantic class:

- Frequency-based amplitude component swapping: the amplitude component is swapped between the input image Iand the referenced image I_R guided by the masked noninstance region.
- Instance-aware augmentation: the instance regions are kept unaltered to maintain the signature of camouflage texture.

RESULT

Tab. 2. Ablation study of our FS-CAMOFreq on instance region augmentation.

FS-CAMOFreq		Detection	n	Segmentation				
Num. of shots	nAP	nAP50	nAP75	nAP	nAP50	nAP75		
1	5.63	8.38	6.44	5.31	8.44	5.97		
2	5.64	8.10	6.56	5.65	8.36	6.49		
3	4.94	7.17	5.71	5.16	7.35	5.78		
5	6.12	9.01	6.59	6.84	9.64	7.53		
Avg.	5.58	8.17	6.33	5.74	8.45	6.44		

Tab. 1. SoTA comparison of our FS-CAMOFreq evaluated on CAMO-FS benchmark. The backbones are COCO-80 FPN-R101.

Model			nAP					nAP50						
Method	Backbone/ Num. of shots	Instance Segmentation Ob			Obj	ject Detection		Instance Segmentation			Object Detection			
		1	5	Avg.	1	5	Avg.	1	5	Avg.	1	5	Avg.	
MTFA [3] M-RCNN [28] iFS-RCNN [2]	COCO-80 ResNet-50	2.48 4.08 4.17	6.40 8.29 6.38	4.44 6.19 5.28	1.98 2.82 3.92	6.17 6.18 6.60	4.08 4.50 5.26	4.24 6.91 6.19	9.89 13.89 10.02	7.07 10.40 8.11	4.12 6.78 6.23	9.94 13.92 10.15	7.03 10.35 8.19	
MTFA [3] M-RCNN [28] iFS-RCNN [2] FS-CDIS-ITL* [4] FS-CDIS-IMS* [4]	COCO-80 ResNet-101	3.66 4.39 4.27 5.35 2.99	5.95 10.09 7.80 9.35 9.03	4.81 7.24 6.04 7.35 6.01	2.93 3.03 3.79 4.71 2.74	5.84 7.79 8.08 10.36 8.44	4.39 5.41 5.94 7.54 5.59	5.37 7.58 5.98 7.80 4.62	8.67 15.41 11.35 14.01 12.48	7.02 11.50 8.67 10.91 8.55	5.86 7.53 5.92 7.85 4.81	9.13 15.86 11.52 14.40 13.18	7.50 11.70 8.72 11.13 9.00	
		Our performance												
Baseline FS-CAMOFreq † FS-CAMOFreq (ours)	COCO-80 ResNet-101	5.55 5.71	8.21 8.31	6.88 7.01	5.34 5.56	8.82 8.89	7.08 7.23	8.42 8.50	12.07 11.72	10.25 10.11	8.49 8.56	12.86 12.11	10.68 10.34	
* denotes the FS-CDIS results built on top of iFS-RCNN [2]														

† denotes our reproduced baseline FS-CDIS iFS-RCNN [2], [4] on our upgraded CUDA version 12.4

ORGANIZERS

SPONSORS

